Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 28-34, 2024.
Article in Chinese | WPRIM | ID: wpr-1006265

ABSTRACT

ObjectiveTo establish an ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry(UHPLC-QqQ-MS) for determination of the active ingredients in Erdongtang, and to predict the targets and pathways of anti-insulin resistance action of this formula. MethodThe analysis was performed on an ACQUITY UPLC BEH C18 column(2.1 mm×100 mm, 1.7 μm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) for gradient elution(0-3 min, 90%-87%A; 3-6 min, 87%-86%A; 6-9 min, 86%-83%A; 9-11 min, 83%-75%A; 11-18 min, 75%-70%A; 18-19 min, 70%-52%A; 19-22 min, 52%A; 22-25 min, 52%-5%A; 25-27 min, 5%-90%A; 27-30 min, 90%A). The contents of active ingredients in Erdongtang was detected by electrospray ionization(ESI) and multiple reaction monitoring(MRM) mode under positive and negative ion modes. On this basis, network pharmacology was applied to predict the targets and pathways of Erdongtang exerting anti-insulin resistance effect. ResultThe 20 active ingredients in Erdongtang showed good linear relationships within a certain mass concentration range, and the precision, stability, repeatability and recovery rate were good. The results of determination showed that the ingredients with high content in 15 batches of samples were baicalein(1 259.39-1 635.78 mg·L-1), baicalin(1 078.37-1 411.52 mg·L-1), the ingredients with medium content were mangiferin(148.59-217.04 mg·L-1), timosaponin BⅡ(245.10-604.89 mg·L-1), quercetin-3-O-glucuronide(89.30-423.26 mg·L-1), rutin(46.91-1 553.61 mg·L-1), glycyrrhizic acid(55.97-391.47 mg·L-1), neomangiferin(37.45-127.03 mg·L-1), nuciferine(0.89-63.48 mg·L-1), hyperoside(6.96-136.78 mg·L-1), liquiritin(30.89-122.78 mg·L-1), liquiritigenin(26.64-110.67 mg·L-1), protodioscin(58.57-284.26 mg·L-1), the ingredients with low content were wogonin(7.16-20.74 mg·L-1), pseudoprotodioscin(5.49-22.96 mg·L-1), ginsenoside Rb1(7.31-23.87 mg·L-1), ginsenoside Rg1(10.78-28.33 mg·L-1), ginsenoside Re(7.78-24.76 mg·L-1), ophiopogonin D(2.08-4.29 mg·L-1), methylophiopogonanone A(0.74-1.67 mg·L-1). The results of network pharmacology indicated that the mechanism of anti-insulin resistance exerted by Erdongtang might be related to the phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathway. ConclusionThe established UHPLC-QqQ-MS has the advantages of simple sample processing, strong exclusivity and high sensitivity, and can simultaneously determine the contents of the main ingredients from seven herbs in Erdongtang, which can lay the foundation for the development of Erdongtang compound preparations. The results of the network pharmacology can provide a reference for the mechanism study of Erdongtang in the treatment of type 2 diabetes mellitus.

2.
Acta Pharmaceutica Sinica ; (12): 1003-1013, 2023.
Article in Chinese | WPRIM | ID: wpr-978762

ABSTRACT

The whole herb of Solanum nigrum L. can be used as the herbal drug. In this study, UHPLC-Q Exactive high resolution mass combined with GNPS molecular network was used for the rapid characterization of the components in the leaves of S. nigrum L. A total of 157 compounds were identified, including 30 steroid alkaloids, 61 steroid saponins, 35 flavonoids, and 31 other compounds (amino acids and organic acids), by comparison with the data reported in the literature, and mass fragmentation characteristics analysis, as well as the correlation of known and unknown nodes in the GNPS molecular network. Compared with the fruits and stems, the leaves of S. nigrum L was rich in a variety of steroidal saponins, steroidal alkaloids, and flavonoids, and the results lay the foundation for the precise resources utilization of S. nigrum L.

3.
Acta Pharmaceutica Sinica ; (12): 1611-1618, 2023.
Article in Chinese | WPRIM | ID: wpr-978718

ABSTRACT

A quantitative analysis method for six principal active constituents (acubin, geniposidic acid, chlorogenic acid, pinoresinol di-O-glucopyranoside, geniposide, and pinoresinol 4-O-glucopyranoside) of crude Eucommiae Cortex (EC) and its salt-processed product extracts was developed to investigate and compare their pharmacokinetic behaviors in adenine-induced renal fibrotic rats in vivo. UHPLC-QqQ-MS/MS technology was employed. Scan was conducted in negative ion mode and quantitative determination was carried out by MRM paired ion. The established method was fully validated by specificity, linearity, precision, accuracy, stability, recovery, and matrix effect, and the results of methodological investigation met the requirements of biological sample analysis. Then, a quick, sensitive, and accurate method was successfully established, which could simultaneously measure the contents of six active constituents of crude and salt-processed EC extracts in rat plasma. After a single administration to renal fibrotic rats of crude EC and its salt-processed product extracts, the plasma concentration of each constituent at different time points was measured, the pharmacokinetic parameters were calculated and the concentration time curves were structured. The experiment was approved by the experimental animal ethics committee from Nanjing University of Chinese Medicine (No. 202103A008). The results showed that compared to the crude Eucommiae Cortex group, the tmax of aucubin, pinoresinol di-O-glucopyranoside, geniposide, and pinoresinol 4-O-glucopyranoside in the salt-processed Eucommiae Cortex group rat plasma were significantly lower than those in the crude group (P < 0.05, P < 0.01); the Cmax and AUC0-48 h of chlorogenic acid, the Cmax, AUC0-48 h and AUC0-∞ of pinoresinol di-O-glucopyranoside, and the Cmax of geniposide and pinoresinol 4-O-glucopyranoside were significantly higher than those in the crude group (P < 0.05, P < 0.01). Our investigation found that compared to crude Eucommiae Cortex, a variety of active ingredients could play a role of quick effect with higher peak blood concentration and bioavailability after oral administration of salt-processed Eucommiae Cortex, which were consistent with the traditional Chinese medicine theory of "salt-processing enhancing drug into kidney meridian", providing an experimental basis for the selection of quality control indexes and the in-depth study of processing mechanisms and metabolic rules in vivo of Eucommiae Cortex and its salt-processed product.

4.
Acta Pharmaceutica Sinica ; (12): 1963-1970, 2023.
Article in Chinese | WPRIM | ID: wpr-978671

ABSTRACT

Bupleuri Radix is commonly used in the traditional Chinese medicine, and saikosaponins are the important active ingredients. In this study, we first established a relative quantitative method for 25 saikosaponins using ultra high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-QTrap-MS) in the scheduled multiple reaction monitoring (sMRM) mode. The established method showed good intra-day and intra-day precision, linearity, repeatability and stability. Then the method was applied to compare 37 batches of Bupleuri Radix from different planting areas. The results showed that there was no significant difference in the saikosaponins composition of Bupleuri Radix from different planting areas in Shanxi Province, which indicating that Bupleuri Radix is well adapted to the environment, so it is suitable for widely planting. However, Bupleuri Radix harvested at spring and autumn were differed from those harvested at summer, which indicated that the traditional harvesting experience was reasonable. Correlation analysis showed that saikosaponins a and d were positively correlated with some saponins, and 4 saponins (such as clinoposaponin XII) showed bigger content variation were identified by coefficient of variation analysis. The LC-MS based pseudotargeted metabonomic method established in this study can be applied to the comprehensive detection of saikosaponins, which providing new method for the quality evaluation of Bupleuri Radix.

5.
China Pharmacy ; (12): 1093-1098, 2023.
Article in Chinese | WPRIM | ID: wpr-972953

ABSTRACT

OBJECTIVE To study the mechanism of Compound zaoren granule in improving insomnia. METHODS Forty-nine mice were divided into blank group, model group, positive control group 1 (Estazolam tablets 0.5 mg/kg),control group 2 (Shumian capsule 0.6 g/kg), Compound zaoren granule low-dose, medium-dose and high-dose groups (2.5, 5, 10 g/kg), with 7 mice in each group. The insomnia model was established by chronic unpredictable mild stress combined with 4-chloro-DL- phenylacetic acid. The behavioral changes of mice were investigated through open field test and pentobarbital sodium synergistic hypnosis experiment, as well as the pathomorphology of mice hypothalamus tissue was observed by HE staining. The metabonomics analysis and multivariate statistical analysis of serum in mice were performed by UHPLC-Q-TOF-MS/MS, and the differential metabolites were screened out; the metabolic pathway analysis was conducted based on MetaboAnalyst 5.0 database. RESULTS Compared with blank group, the total travelling distance, the number of entering the central region and the moving distance in the central region of the model group were significantly reduced (P<0.05), the proportion of total rest time was significantly increased (P<0.05), the sleep duration of mice was significantly shortened (P<0.05), and hypothalamic nerve cells damaged and severely vacuolated. Compared with model group, the total travelling distance of Compound zaoren granule low-dose and medium-dose groups were increased significantly and the proportions of total rest time of those groups were decreased significantly (P<0.05), and the sleep duration of mice in Compound zaoren granule high-dose group was prolonged significantly (P<0.05); the hypothalamic nerve cells of mice in each administration group recovered to varying degrees, and the hypothalamus histiocytes of mice in the Compound zaoren granules high-dose group were closer to those in the blank group. A total of 18 differential metabolites (such as phenylalanine, taurine, norvaline, methionine) and 4 important amino acid metabolic pathways (L-phenylalanine, tyrosine and tryptophan biosynthesis; taurine and hypotaurine metabolism; L-phenylalanine metabolism; cysteine and methionine metabolism) were identified through metabolomics analysis. CONCLUSIONS Compound zaoren granules can normalize the disordered metabolism in vivo by regulating differential metabolites such as phenylalanine, taurine, and four amino acid metabolic pathways, so as to improve insomnia.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 34-42, 2023.
Article in Chinese | WPRIM | ID: wpr-972283

ABSTRACT

ObjectiveTo establish the specific chromatogram and thin layer chromatography(TLC) of Qingxin Lianziyin(QXLZY) benchmark samples, in order to clarify the key quality attributes and provide a reference for the quality evaluation of QXLZY. MethodHigh performance liquid chromatography(HPLC) specific chromatogram of QXLZY benchmark samples was developed by using a YMC Hydrosphere C18 column(4.6 mm×250 mm, 5 μm) with the mobile phase of acetonitrile(A)-0.2% formic acid aqueous solution(B) for gradient elution(0-10 min, 5%-20%A; 10-20 min, 20%A; 20-25 min, 20%-24%A; 25-40 min, 24%-30%A; 40-55 min, 30%-50%A; 55-65 min, 50%-100%A; 65-75 min, 100%A; 75-75.1 min, 100%-5%A; 75.1-90 min, 5%A), and the detection wavelength was 360 nm. Ultra-high performance liquid chromatography-linear ion trap/orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) with electrospray ionization(ESI) was used to identify the components of QXLZY benchmark samples by accurate relative molecular weight and multilevel MS fragment ion information, the detection conditions were positive and negative ion modes and data dependency scanning mode. TLC identification methods for Ophiopogonis Radix, Lycii Cortex, Nelumbinis Semen, Poria, Astragali Radix and Ginseng Radix et Rhizoma in QXLZY were established. ResultA total of 15 characteristic peaks were identified from Glycyrrhizae Radix et Rhizoma, Plantaginis Semen and Scutellariae Radix, and the relative standard deviations of the retention times of 15 characteristic peaks in 15 batches of QXLZY benchmark samples were≤3% with peak 8(baicalin) as the reference peak. A total of 100 compounds, including flavonoids, organic acids, saponins, amino acids and others, were identified in the benchmark samples by UHPLC-LTQ-Orbitrap MS. The established TLC had good separation and was suitable for the identification of Ophiopogonis Radix, Lycii Cortex, Nelumbinis Semen, Poria, Astragali Radix and Ginseng Radix et Rhizoma in QXLZY. ConclusionThe material basis of QXLZY benchmark samples is basically determined by MS designation and source attribution. The established specific chromatogram and TLC of QXLZY are simple, stable and reproducible, which can provide a reference for the development and quality control of QXLZY.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 126-133, 2023.
Article in Chinese | WPRIM | ID: wpr-988188

ABSTRACT

ObjectiveUltra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used to identify the metabolites of limonin in rats, and to explore the gender differences in the distribution of prototype components and metabolites in rats after single dose intragastric administration of limonin, as well as to speculate the metabolic pathways. MethodThe separation was performed on a Thermo Scientific Accucore™ C18 column(3 mm×100 mm, 2.6 μm) with 0.1% formic acid aqueous solution(A)-0.1% formic acid acetonitrile solution(B) as mobile phase in a gradient elution mode(0-1 min, 5%B; 1-6 min, 5%-20%B; 6-18 min, 20%-50%B; 18-23 min, 50%-80%B; 23-25 min, 80%-95%B; 25-30 min, 95%B) at a flow rate of 0.3 mL·min-1 and a column temperature of 30 ℃. MS data of biological samples were collected under the positive ion mode of electrospray ionization(ESI) and in the scanning range of m/z 100-1 500. Plasma, tissues(heart, liver, spleen, lung, kidney, stomach and small intestine), urine and fecal samples were collected and prepared after intragastric administration, and the prototype component and metabolites of limonin were identified. ResultThe prototype component of limonin were detected in the feces, stomach, small intestine of female and male rats, and in the heart, liver, spleen, lung and kidney tissues of female rats. A total of 23 metabolites related to limonin were detected in rats, of which 2, 1, 5, 4, 23 metabolites were detected in liver, stomach, small intestine, urine and feces, respectively, and the main metabolic pathways were hydrolysis, reduction, hydroxylation and methylation, etc. The distribution of some metabolites differed between male and female rats. ConclusionThe prototype component of limonin are mainly distributed in the stomach and small intestine in rats, and the distribution of prototype component and some metabolites are different by gender. Limonin is mainly excreted through feces with phase Ⅰ metabolites as the main ones. The results of this study can provide a reference for further elucidation of the effect of gender differences on the metabolism of limonin in vivo and its mechanism of action.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 109-117, 2023.
Article in Chinese | WPRIM | ID: wpr-988186

ABSTRACT

ObjectiveIn this study, based on ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS/MS) and high-throughput transcriptome sequencing technology(RNA-seq), we investigated the mechanism of Yishen Huashi granules in regulating serum metabolites and renal messenger ribonucleic acid(mRNA) expression to improve diabetic kidney disease(DKD). MethodSD rats were randomly divided into normal group , model group and Yishen Huashi granules group, with 8 rats in each group. The rat model of DKD was established by intraperitoneal injection of streptozotocin. Yishen Huashi granules group was given 5.54 g·kg-1·d-1 of Yishen Huashi granules by gavage, and the normal group and the model group were given the same amount of normal saline for 6 weeks. During the experiment, the body weight and blood glucose of rats were monitored, and the rats were anesthetized 24 hours after the last administration, blood was collected from the inferior vena cava, serum was separated, and renal function, blood lipid, and inflammatory indicators were detected. Kidney tissue of rats was fixed in neutral paraformaldehyde, and stained with hematoxylin-eosin(HE), Masson and periodic acid-Schiff(PAS) to observe the renal pathological changes. UHPLC-MS/MS and RNA-seq were used to identify the changes of serum metabolism and the differences of renal mRNA expression, and real time fluorescence quantitative polymerase chain reaction(Real-time PCR) and Western blot were used to detect the differential mRNA and protein expression in renal tissue to explore the common expression mechanism. ResultCompared with the normal group, rats in the model group showed a decrease in body weight, a significant increase in blood glucose, urinary microalbumin to urinary creatinine ratio(UACR), blood urea nitrogen(BUN), cystatin-C(Cys-C), β2-microglobulin(β2-MG), interleukin-6(IL-6), triglyceride(TG) and total cholesterol(TC), and a significant decrease in total superoxide dismutase(T-SOD)(P<0.01). After the intervention of Yishen Huashi granules, all the indexes were improved to different degrees in rats(P<0.05, P<0.01). Compared with the normal group, the model group showed renal mesangial stromal hyperplasia, fibrous tissue hyperplasia and tubular vacuolar degeneration. Compared with the model group, the renal pathology of rats in Yishen Huashi granules group was improved to a certain extent. A total of 14 target metabolites and 96 target mRNAs were identified, the target metabolites were mainly enriched in 20 metabolic pathways, including sphingolipid metabolism, glycerophospholipid metabolism, and the biosynthesis of phenylalanine, tyrosine and tryptophan. The target mRNAs were enriched to obtain a total of 21 differential mRNAs involved in the TOP20 pathways closely related to glycolipid metabolism. A total of 6 pathways, glycerophospholipid metabolism, arachidonic acid metabolism, purine metabolism, primary bile acid biosynthesis, ascorbic acid and uronic acid metabolism, and galactose metabolism, were enriched by serum differential metabolites and renal differential mRNAs, among them, there were 7 differential metabolites such as phosphatidylethanolamine(PE) and 7 differential mRNAs such as recombinant adenylate cyclase 3(ADCY3). Seven differential metabolites had high predictive accuracy as verified by receiver operating characteristic(ROC) curve, and the results of Real-time PCR and Western blot were highly consistent with the sequencing results. ConclusionYishen Huashi granules can reduce UACR, BUN and other biochemical indexes, correct the disorder of glucose and lipid metabolism, and improve renal function of DKD rats. And its mechanism may be related to the regulation of the level of PE and other blood metabolites, and expression of Phospho1 and other mRNAs in the kidney, of which six pathways, including glycerophospholipid metabolism, may play an important role.

9.
China Journal of Chinese Materia Medica ; (24): 183-192, 2023.
Article in Chinese | WPRIM | ID: wpr-970513

ABSTRACT

This study aims to explore the anti-depression mechanism of Zuojin Pills based on the plasma constituents, network pharmacology, and experimental verification. UHPLC-TOF-MS was used for qualitative analysis of Zuojin Pills-containing serum. Targets of the plasma constituents and the disease were retrieved from PharmMapper and GeneCards. Then the protein-protein interaction(PPI) network was constructed and core targets were screened for GO term enrichment and KEGG pathway enrichment. Cytoscape 3.7.2 was employed construct the "compound-target-pathway" network and the targets and signaling pathways of Zuojin Pills against depression were predicted. CUMS-induced depression mouse model was established to verify the key targets. The results showed that a total of 21 constituents migrating to blood of Zuojin Pills were identified, which were mainly alkaloids. A total of 155 common targets of the constituents and the disease and 67 core targets were screened out. KEGG enrichment and PPI network analysis showed that Zuojin Pills may play a role in the treatment of depression through AMPK/SIRT1, NLRP3, insulin and other targets and pathways. Furthermore, the results of animal experiments showed that Zuojin Pills could significantly improve the depression behaviors of depression, reduce the levels of IL-1β, IL-6 and TNF-α in hippocampus and serum, activate AMPK/SIRT1 signaling, and reduce the protein expression of NLRP3. In conclusion, Zuojin Pills may play a role in the treatment of depression by activating AMPK/SIRT1 signaling pathway, and inhibiting NLRP3 activation and neuroinflammation in the hippocampus of mice.


Subject(s)
Animals , Mice , Network Pharmacology , AMP-Activated Protein Kinases , Chromatography, High Pressure Liquid , NLR Family, Pyrin Domain-Containing 3 Protein , Sirtuin 1 , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation
10.
China Journal of Chinese Materia Medica ; (24): 126-139, 2023.
Article in Chinese | WPRIM | ID: wpr-970508

ABSTRACT

UHPLC-Q-Exactive Orbitrap MS/MS was used to systematically analyze and compare the alkaloids in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Praeparata. After the samples were pretreated in the solid-phase extraction cartridges, 0.1% ammonium hydroxide(A)-acetonitrile(B) was used for gradient elution. The LC-MS method for characterization of alkaloids in the three herbal medicines was established in ESI positive ion mode to collect high resolution MS data of reference substances and samples. On the basis of the information of reference substance cracking behavior, retention time, accurate molecular mass, and related literature, a total of 155 alkaloids were identified in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Prae-parata. Specifically, 130, 127, and 92 alkaloids were identified in Aconiti Kusnezoffii Radix, Aconiti Radix, and Aconiti Lateralis Radix Praeparata, respectively. Monoester alkaloids and amino-alcohol alkaloids were dominant in the three herbal medicines, and the alkaloids in Aconiti Kusnezoffii Radix and Aconiti Radix were similar. This paper can provide a reference for elucidating the pharmacological effects and clinical application differences of the three herbal medicines produced from plants of Aconitum.


Subject(s)
Tandem Mass Spectrometry , Aconitum , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal , Alkaloids , Plants, Medicinal
11.
China Journal of Chinese Materia Medica ; (24): 71-81, 2023.
Article in Chinese | WPRIM | ID: wpr-970503

ABSTRACT

Wuzhuyu Decoction, the classical formula recorded in the Treatise on Febrile Diseases(Shang Han Lun), has been included in the Catalogue of Ancient Classic Prescriptions(the First Batch). Consisting of Euodiae Fructus, Ginseng Radix et Rhizoma, Zingiberis Rhizoma Recens, and Jujubae Fructus, it is effective in warming the middle, tonifying deficiency, dispelling cold, and descending adverse Qi, and is widely applied clinically with remarkable efficacies. For a classical formula, the chemical composition is the material basis and an important premise for quantity value transfer. This study aimed to establish a rapid identification method of chemical components in Wuzhuyu Decoction by high-resolution mass spectrometry(HR-MS) and molecular network. AQUITY UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) was used for sample separation, and acetonitrile-0.1% formic acid in water was used as mobile phases for gradient elution. Q-Exactive Orbitrap MS data were collected in positive and negative ion modes, and GNPS molecular network was plotted according to the similarity of MS/MS fragmentation modes. Cytoscape 3.6.1 was used to screen molecular clusters with similar structures. Finally, the chemical components of Wuzhuyu Decoction were rapidly identified according to the controls, as well as the information of retention time, accurate relative molecular weight of HR-MS, and MS/MS multistage fragments. A total of 105 chemical components were identified in Wuzhuyu Decoction. This study can provide data for the follow-up quality control, standard substance research, and pharmacodynamic material research on Wuzhuyu Decoction, as well as references for the rapid qualitative analysis of the chemical components of Chinese medicine.


Subject(s)
Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Quality Control
12.
China Journal of Chinese Materia Medica ; (24): 399-414, 2023.
Article in Chinese | WPRIM | ID: wpr-970477

ABSTRACT

This study aims to explore the chemical composition of Rehmanniae Radix braised with mild fire and compare the effect of processing method on the chemical composition of Rehmanniae Radix. To be specific, ultra-high performance liquid chromatography with linear ion trap-orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) was used to screen the chemical constituents of Rehmanniae Radix. The chemical constituents were identified based on the relative molecular weight and fragment ions, literature information, and Human Metabolome Database(HMDB). The ion peak area ratio of each component before and after processing was used as the index for the variation. SIMCA was employed to establish principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) models of different processed products. According to the PCA plot, OPLS-DA plot, and VIP value, the differential components before and after the processing were screened out. The changes of the content of differential components with the processing method were analyzed. A total of 66 chemical components were identified: 57 of raw Rehmanniae Radix, 55 of steamed Rehmanniae Radix, 55 of wine-stewed Rehmanniae Radix, 51 of repeatedly steamed and sundried Rehmanniae Radix Praeparata, 62 of traditional bran-braised Rehmanniae Radix, and 63 of electric pot-braised Rehmanniae Radix. Among them, the 9 flavonoids of braised Rehmanniae Radix were from Citri Reticulatae Pericarpium. PCA suggested significant differences in the chemical composition of Rehmanniae Radix Praeparata prepared with different processing methods. OPLS-DA screened out 32 chemical components with VIP value >1 as the main differential components. Among the differential components, 9 were unique to braised Rehmanniae Radix(traditional bran-braised, electric pot-braised) and the degradation rate of the rest in braised(traditional bran-braised, electric pot-braised) or repeatedly steamed and sundried Rehmanniae Radix was higher than that in the steamed or wine-stewed products. The results indicated the chemical species and component content of Rehmanniae Radix changed significantly after the processing. The 32 components, such as rehmapicrogenin, martynoside, jionoside D, aeginetic acid, hesperidin, and naringin, were the most important compounds to distinguish different processed products of Rehmanniae Radix. The flavonoids introduced by Citri Reticulatae Pericarpium as excipient may be the important material basis for the effectiveness of braised Rehmanniae Radix compared with other processed products.


Subject(s)
Humans , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Plant Extracts/chemistry , Rehmannia/chemistry , Flavonoids/analysis
13.
China Pharmacy ; (12): 796-801, 2023.
Article in Chinese | WPRIM | ID: wpr-969574

ABSTRACT

OBJECTIVE To identify the chemical components of Changtong oral liquid (CTOL),and to provide reference for the basic research and secondary development of its pharmacological substances. METHODS UHPLC-Orbitrap HRMS technique was adopted. CTOL sample was separated on a Hypersil Gold column with mobile phase consisted of 0.1% formic acid (containing 5 mmol/L ammonium formate)-acetonitrile (gradient elution). The eluent was detected in positive and negative ion modes using an electrospray ionization source. The data was processed by Xcalibur 4.3 and Compound Discoverer 3.3 software. The primary and secondary mass spectra data of each compound were collected. The unknown compounds were identified according to the mass spectrometry library of the instrument and the network databases mzCloud,mzVault,etc. Through matching with the pharmacology database and analysis platform of the traditional Chinese medicine system,the chemical components could be attributed to the traditional Chinese medicine. RESULTS Fifty-three chemical components were identified and analyzed from CTOL,such as 24 flavonoids,8 quinones,5 phenylpropanoids,4 sugars and glycosides,5 organic acids,3 amino acids,1 alkaloid,1 phenolic and 2 other compounds. Among them,12 components were derived from Salvia miltiorrhiza,9 from Citrus aurantium,7 from Rheum palmatum,4 from Angelica sinensis,1 from Magnolia officinalis,16 from Glycyrrhiza uralensis,and 4 from many kinds of medicinal materials. CONCLUSIONS CTOL mainly contains flavonoids,quinones and phenylpropanoid compounds,and its chemical components mainly come from G. uralensis,S. miltiorrhiza and C. aurantium.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 166-178, 2023.
Article in Chinese | WPRIM | ID: wpr-965660

ABSTRACT

ObjectiveTo investigate the changes of differential metabolites in the serum of mice at different stages of bleomycin sulfate(BLM)-induced pulmonary fibrosis modeling and administration, and the mechanism of Wenfei Huaxian granules(WHG)against idiopathic pulmonary fibrosis. MethodMice were randomly divided into control group, control group of 14 days, model group, model group of 14 days, low-dose WHG group and high-dose WHG group. BLM(0.04 U per mouse)was injected into the trachea of mice in the model group, model group of 14 days, low-dose WHG group and high-dose WHG group, and sterile normal saline was injected into the trachea of mice in the control group and control group of 14 days. Mice of low-dose WHG group and high-dose WHG group were given different doses of WHG by gavage every day after injection of BLM, and mice of control group, control group of 14 days, model group and model group of 14 days were given sterile water by gavage every day. The peripheral blood of mice in the control group of 14 days and model group of 14 days were taken to prepare serum after injection of BLM for 14 days, and the peripheral blood and other materials of mice in the other groups were taken after continuous administration for 28 days. The bronchoalveolar lavage fluid(BALF)was collected for leucocyte differential count, the pathological examination and hydroxyproline(HYP)content determination of lung tissues of mice were performed, and the small molecule metabolites in serum samples of mice in each group were determined by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS). Principal component analysis(PCA)and orthogonal partial least squares-discriminant analysis(OPLS-DA)were conducted to screen differential metabolites and their biological functions were analyzed. ResultCompared with the control group, a large number of continuous fibrotic foci appeared in the lung tissue of mice in the model group, the alveolitis score, fibrosis degree score and HYP content increased significantly(P<0.01), and the total number of leukocytes, macrophages and lymphocytes in BALF increased significantly(P<0.05). A total of 33 differential metabolites were screened between the control group of 14 days and model group of 14 days, mainly lipid metabolites, which were mainly involved in oxidative damage and inflammatory process. A total of 34 differential metabolites, mainly amino acid metabolites, were screened between the control group and model group, mainly involving nucleic acid damage and inflammatory process. Compared with the model group, the HYP content, fibrosis score and alveolitis score in the lung tissue of mice from high-dose WHG group decreased significantly(P<0.05, P<0.01), and the total number of lymphocytes in BALF decreased significantly(P<0.05). Compared with the model group, 27, 40 differential metabolites were identified in the serum of mice from the low-dose WHG group and high-dose WHG group separately. There were totally 9 common differential metabolites between the model group and low-dose WHG group/high-dose WHG group, which mainly involved in the metabolic pathways of inflammation related lipids metabolism, arginine and tryptophan metabolism, and the change trends in low-dose WHG group and high-dose WHG group were significantly back-regulated compared with the model group. ConclusionWHG can alleviate BLM-induced pulmonary fibrosis, collagen deposition and inflammatory reaction in mice, and its anti-fibrotic effect may be related to the adjusting of inflammatory factors, nitric oxide and oxidative stress related metabolic pathways.

15.
Chinese Herbal Medicines ; (4): 430-438, 2023.
Article in English | WPRIM | ID: wpr-982520

ABSTRACT

OBJECTIVE@#The present study aimed to evaluate the therapeutic effect and explore the underlying mechanisms of Longxue Tongluo Capsule (LTC) on ischemic stroke rats.@*METHODS@#Twenty-six rats were randomly divided into four groups, including sham group, sham + LTC group, MCAO group, and MCAO + LTC group. Ischemic stroke rats were simulated by middle cerebral artery occlusion (MCAO), and LTC treatment group were orally administrated with 300 mg/kg of LTC once daily for seven consecutive days. LTC therapy was validated in terms of neurobehavioral abnormality evaluation, cerebral infarct area, and histological assessments. The plasma metabolome comparisons amongst different groups were conducted by UHPLC-Q Exactive MS in combination with subsequent multivariate statistical analysis, aiming to finding the molecules in respond to the surgery or LTC treatment.@*RESULTS@#Intragastric administration of LTC significantly decreased not only the neurobehavioral abnormality scores but also the cerebral infarct area of MCAO rats. The interstitial edema, atrophy, and pyknosis of glial and neuronal cells occurred in the infarcted area, core area, and marginal area of cerebral cortex were improved after LTC treatment. A total of 13 potential biomarkers were observed, and Youden index of 11 biomarkers such as LysoPC, SM, and PE were more than 0.7, which were involved in neuroprotective process. The correlation and pathway analysis showed that LTC was beneficial to ischemic stroke rats via regulating glycerophospholipid and sphingolipid metabolism, together with nicotinate and nicotinamide metabolism. Heatmap and ternary analysis indicated the synergistic effect of carbohydrates and lipids may be induced by flavonoid intake from LTC.@*CONCLUSION@#The present study could provide evidence that metabolomics, as systematic approach, revealed its capacity to evaluate the holistic efficacy of TCM, and investigate the molecular mechanism underlying the clinical treatment of LTC on ischemic stroke.

16.
Chinese Herbal Medicines ; (4): 439-446, 2023.
Article in English | WPRIM | ID: wpr-982518

ABSTRACT

OBJECTIVE@#Pseudostellaria heterophylla has been paid more attention in recent years, mainly as a medicine food homology plant. The content determination of P. heterophylla is not specified in the Chinese Pharmacopoeia (version 2020). The environmental conditions in different production areas could exert an influence on the quality of P. heterophylla. The purpose of this study is to discriminate P. heterophylla collected from different geographical origins of China.@*METHODS@#In this study, the content of polysaccharide in 28 batches of P. heterophylla was determined using phenol-sulfuric acid. HPLC fingerprints were established under optimised HPLC-PDA methods. Subsequently, the similarity analysis (SA) and the quantification of heterophyllin B were analyzed. The metabolites of P. heterophylla were identified and evaluated using UHPLC-Q Exactive HF orbitrap MS system. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), hierarchical cluster analysis (HCA) and orthogonal PLS-DA (OPLS-DA) were performed based on all peak areas.@*RESULTS@#The polysaccharide content in Guizhou and Jiangsu was higher than that of other production areas, which varied significant from different origins. While the content of heterophyllin B in Anhui and Jiangsu was high. The correlation coefficients of HPLC fingerprints for 28 batches samples ranged from 0.877 to 0.990, and the characteristic map can be used to identify and evaluate the quality of P. heterophylla. The samples from Fujian, Guizhou, Jiangsu provinces can be relatively separated using multivariate statistical analysis including PCA, PLS-DA, HCA, OPLS-DA, indicating that their metabolic compositions were significantly different. Ultimately, a total of 15 metabolites which were filtrated by a VIP-value > 1 and a P-value < 0.05 associated with the separation of different origins were identified.@*CONCLUSION@#HPLC fingerprint was established to evaluate the quality and authenticity of P. heterophylla. The present work showed that the difference of geographic distributions had an influence on the internal chemical compositions. A sensitive and rapid untargeted metabolomics approach by UHPLC-Q Exactive HF orbitrap MS was utilized to evaluate P. heterophylla from different origins in China for the first time. Overall, this study provides insights to metabolomics of P. heterophylla and supplies important reference values for the development of functional foods.

17.
China Journal of Chinese Materia Medica ; (24): 3516-3534, 2023.
Article in Chinese | WPRIM | ID: wpr-981484

ABSTRACT

Ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Orbitrap HRMS) was employed to systematically analyze the chemical constituents in Lysionoti Herba, and high perfor-mance liquid chromatography-ultraviolet(HPLC-UV) to determine the content of main compounds. A Synergi~(TM) Hydro-RP 100 Å colu-mn(2 mm×100 mm, 2.5 μm) was used for gradient elution with acetonitrile-0.1% aqueous formic acid as the mobile phase at a flow rate of 0.2 mL·min~(-1) and a column temperature of 40 ℃. MS and MS/MS were conducted with electrospray ionization(ESI) in both positive and negative modes. The chemical components in Lysionoti Herba were identified by comparison with the retention time and mass spectra of reference compounds and the relevant mass spectral data reported in MS databases and relevant literature. Furthermore, the content of five constituents(neochlorogenic acid, chlorogenic acid, forsythoside B, acteoside, and nevadensin) in different Lysiono-ti Herba samples was simultaneously determined by HPLC-UV at the wavelength of 330 nm. A total of 84 compounds were identified in Lysionoti Herba, including 27 flavonoids, 20 phenylethanoid glycosides, 5 amino acids, 18 organic acids, 1 alkaloid, 6 nucleosides, and 7 others. The content of neochlorogenic acid, chlorogenic acid, forsythoside B, acteoside, and nevadensin showed good linear relationship(r>0.999) with the peak area within certain concentration ranges, which were 3.22-102.90, 12.84-410.82, 31.63-1 012.01, 25.00-800.11, and 4.08-130.51 μg·mL~(-1), respectively. The instrument precision, method repeatability, and solution stability all met requirement, and the average recovery rate was 97.31%-100.2%, with RSD ranging from 0.95% to 2.4%. The content of the five components varied among different Lysionoti Herba samples collected from different regions of Guizhou, and the average content of forsythoside B was the highest. The established qualitative method can rapidly and efficiently identify the chemical components of Lysionoti Herba, and the developed HPLC-UV method can simultaneously determine the content of five components in a simple, ra-pid, and accurate manner, providing a scientific basis for the quality evaluation of Lysionoti Herba.


Subject(s)
Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Chlorogenic Acid , Drugs, Chinese Herbal/chemistry
18.
China Journal of Chinese Materia Medica ; (24): 2989-2999, 2023.
Article in Chinese | WPRIM | ID: wpr-981445

ABSTRACT

This study was designed to comprehensively characterize and identify the chemical components in traditional Chinese medicine Psoraleae Fructus by establishing an ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) method in combination with in-house library. The chromatographic separation conditions(stationary phase, column temperature, mobile phase, and elution gradient) and key MS monitoring parameters(capillary voltage, nozzle voltage, and fragmentor) were sequentially optimized via single-factor experiments. A BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) was finally adopted, with the mobile phase consisting of 0.1% formic acid in water(A) and acetonitrile(B) at the flow rate of 0.4 mL·min~(-1) and column temperature of 30 ℃. Auto MS/MS was utilized for data acquisition in both positive and negative ion modes. By comparison with reference compounds, analysis of the MS~2 fragments, in-house library retrieval and literature research, 83 compounds were identified or tentatively characterized from Psoraleae Fructus, including 58 flavonoids, 11 coumarins, 4 terpenoid phenols, and 10 others. Sixteen of them were identified by comparison with reference compounds, and ten compounds may have not been reported from Psoraleae Fructus. This study achieved a rapid qualitative analysis on the chemical components in Psoraleae Fructus, which provided useful reference for elucidating its material basis and promoting the quality control.


Subject(s)
Chromatography, High Pressure Liquid , Medicine, Chinese Traditional , Tandem Mass Spectrometry , Cell Cycle , Coumarins
19.
China Journal of Chinese Materia Medica ; (24): 1899-1907, 2023.
Article in Chinese | WPRIM | ID: wpr-981409

ABSTRACT

To study the quality control of three traditional Chinese medicines derived from Gleditsia sinensis [Gleditsiae Sinensis Fructus(GSF), Gleditsiae Fructus Abnormalis(GFA), and Gleditsiae Spina(GS)], this paper established a multiple reaction monitoring(MRM) approach based on ultra-high performance liquid chromatography-triple quadrupole-linear ion-trap mass spectrometry(UHPLC-Q-Trap-MS). Using an ACQUITY UPLC BEH C_(18) column(2.1 mm × 100 mm, 1.7 μm), gradient elution was performed at 40 ℃ with water containing 0.1% formic acid-acetonitrile as the mobile phase running at 0.3 mL·min~(-1), and the separation and content determination of ten chemical constituents(e.g., saikachinoside A, locustoside A, orientin, taxifolin, vitexin, isoquercitrin, luteolin, quercitrin, quercetin, and apigenin) in GSF, GFA, and GS were enabled within 31 min. The established method could quickly and efficiently determine the content of ten chemical constituents in GSF, GFA, and GS. All constituents showed good linearity(r>0.995), and the average recovery rate was 94.09%-110.9%. The results showed that, the content of two alkaloids in GSF(2.03-834.75 μg·g~(-1)) was higher than that in GFA(0.03-10.41 μg·g~(-1)) and GS(0.04-13.66 μg·g~(-1)), while the content of eight flavonoids in GS(0.54-2.38 mg·g~(-1)) was higher than that in GSF(0.08-0.29 mg·g~(-1)) and GFA(0.15-0.32 mg·g~(-1)). These results provide references for the quality control of G. sinensis-derived TCMs.


Subject(s)
Flavonoids/analysis , Alkaloids , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Drugs, Chinese Herbal
20.
China Journal of Chinese Materia Medica ; (24): 2126-2143, 2023.
Article in Chinese | WPRIM | ID: wpr-981344

ABSTRACT

Sanhan Huashi formula(SHF) is the intermediate of a newly approved traditional Chinese medicine(TCM) Sanhan Huashi Granules for the treatment of COVID-19 infection. The chemical composition of SHF is complex since it contains 20 single herbal medicines. In this study, UHPLC-Orbitrap Exploris 240 was used to identify the chemical components in SHF and in rat plasma, lung and feces after oral administration of SHF, and heat map was plotted for characterizing the distribution of the chemical components. Chromatographic separation was conducted on a Waters ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 μm) using 0.1% formic acid(A)-acetonitrile(B) as mobile phases in a gradient elution. Electrospray ionization(ESI) source was used to acquire data in positive and negative mode. By reference to quasi-molecular ions and MS/MS fragment ions and in combination with MS spectra of reference substances and compound information in literature reports, 80 components were identified in SHF, including 14 flavonoids, 13 coumarins, 5 lignans, 12 amino-compounds, 6 terpenes and 30 other compounds; 40 chemical components were identified in rat plasma, 27 in lung and 56 in feces. Component identification and characterization of SHF in vitro and in vivo lay foundations for disclosure of its pharmacodynamic substances and elucidation of the scientific connotation.


Subject(s)
Rats , Animals , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , COVID-19 , Lignans
SELECTION OF CITATIONS
SEARCH DETAIL